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Why do we need models?

§ Common misunderstanding: Modelling is not a form of 
hypothesis testing: “garbage in, garbage out”

§ Forces us to make assumptions explicit. 
§ Enables many “virtual" experiments to be done, can 

pinpoint the one that is most crucial.
§ Can lead to unexpected predictions.
§ Often much quicker/easier to try out ideas, e.g. blocking 

a connection or channel type



What makes a good model?
§ However, it's easy to make a bad alifey or 

physicsy model
§ Good to have close contact with 

neuroscientists
§ Model should not only replicate existing 

data but must also make new predictions 
about the biological system



Scales in the nervous systemLevels of modelling (1)



Levels (scales) of modelling
§ Many different types of models: There is a 

continuum from very realistic to very abstract. 
All models must make simplifications to be 
useful.

§ For instance, a model of a single neuron:
§ Binary threshold unit, continuous unit 
§ Rate model, Integrate-and-fire model, Spiking neuron
§ A few compartments, many compartments
§ Individual channels, detailed model of channel dynamics
§ …



Which model to use?
§ Depends on purpose of the model! Different types 

are appropriate for different sorts of questions.
§ Two mainstream approaches: Top-down vs bottom 

up:
§ Top-down: based on rational theoretical hypothesis to infer 

the mechanism of brain functions, i.e., start with an idea about 
abstract task / problem, figure out a good way to solve it and 
see if that's what the nervous system does.

§ Bottom-up: based on experimental data, i.e., look closely at 
the nervous system, try and figure out what it’s doing, derive 
the task/problem from there.



Modelling neurons
Neurons have a soma 
(cell body), dendrites 
(input) and axon 
(output).

We will abstract this to 
”single compartment” 
or “point” neurons

dendrites

soma

axon



Ion channels
Ion channels in 
the membrane 
lower the 
effective 
membrane
resistance by a 
factor of 10,000 
(depending on 
density, type, etc.)
Ion pumps 
maintain the

differences in concentrations inside and outside by expending 
energy.



The membrane potential

Difference in 
concentration: ions 
diffuse through 
channels (when 
open)

Exterior potential 0 
by convention 

Excess of positive 
charge outside -> 
resting membrane 
potential is negative. 



Conductance based model

If Cm is constant: 



Adding ion channels
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Persistent and transient currents

Delayed rectifier Sodium current



Hodgkin-Huxley model

Non-inactivating delayed rectifier current



Hodgkin-Huxley model
Sodium current

“activation”

“inactivation”



Hodgkin-Huxley model
Is often rewritten in terms of

⇒ dn

dt
=

1

τn
(n∞ − n)



Hodgkin-Huxley model



Action potential
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Hodgkin-Huxley model
§ The original model is “numerically not very 

nice”
§ Is a type II neuron (Hopf bifurcation)
§ Today, not used much
§ One of the most-used models is the HH-like 

model by Traub & Miles (1991), which has 
type I behaviour (saddle-node bifurcation)



Traub-Miles model
§ In practice, it works very well
§ Surprisingly, it has numerical instabilities:

Unclear at V=-50. 
§ L’Hôpital shows that it’s well-defined and 

continuous



Modelling networks
§ Action potential travel down axons 

(mostly not modeled explicitly)
§ Axons make contacts with target 

neuron’s dendrites at Synapses
§ Synapses can – depending on 

transmitter – be excitatory (depolarize 
target neuron) or inhibitory (hyper-
polarize)



Synapses
Synaptic transmission is 
by chemical transmitters 
for most synapses
Depolarization of the pre-
synaptic terminal leads to 
transmitter release across 
the cleft
Post-synaptic channels 
are opened by the 
transmitter



Modeling synapses

Fraction s of released transmitter: 

Synaptic current into post-synaptic neuron:
Isyn = gsyns(Vrev − Vpost)

ds

dt
= −βs + α(1 − s)1[t,t+tr]



How to use HH models
§ Used for numerical simulations:

§ Each neuron:

§ Each pre-synapse:

§ Each post-synapse:

dVj

dt
= . . .

dsj
dt

= . . .

Ii,syn =
∑

j

gijsj(Vrev − Vi)



How to simulate …
§ Euler Algorithm

§ Good if equations not too stiff, small 
time steps

§ Otherwise: Runge-Kutta algorithms, 
implicit algorithms, …

Vi(t + ∆t) = V (t) +
dVi

dt
∆t + O(∆t2)



Simplified models
§ One can work with V as the main 

variable (and many people/studies do)
§ But for larger scale/ different analysis 

one can use simplified models



A zoo of models …
§ Morris-Lecar
§ Fitzhugh-Nagumo
§ (leaky) integrate-and-fire 

(IF/ LIF), exponential, adExp, 
GIF

§ McCulloch-Pitts
§ Hindmarsh-Rose
§ Izhikevich, Rulkov
§ Wilson-Cowan
§ Kuramoto

Reduced HH

discrete time/ 
probabilistic
“abstract spiking”

rate models
phase oscillators



Integrate-and-Fire

§ Simple membrane equation – passive 
only

§ Explicit spiking mechanism:
if                   : spike fired, 
reset:  

V̇ = −gL(VL − V )

V > Vth

V → Vreset



Integrate-and-Fire
§ Faster to simulate
§ Allows some analytical work:

§ Event - based simulation
§ General analysis with theory of stochastic 

processes

§ Suitable for neuromorphic devices



Different views of the same activity
§ For synaptic transmission only spikes matter

Trace of a B1 neuron in 
the pond snail

*

Detect spikes

Convolve with a kernel

Equivalent “spike 
density function” – a 
measure of spike rate



Quantitative rate reduction
§ We start from a full, conductance-based 

model:

§ Synapses are modelled by

Buckley & Nowotny, PRL 
106, 238109 (2011)

CV̇i = −INa − IK − IL − IM − Ii,ext − Ii,syn

Ii,syn =
∑

j

gijsj(Vi − Vrev)

ṡi = −βsi + α
∑

k

1[tk,tk+tr ]



Step 1: f-I curve
It is common to 
characterize neurons by 
their so-called F-I curve:
• For type 1 (saddle-

node bifurcation) 
neurons: 

• For type 1 with 
adaptation: linear

no adaptation

with adaptation
F (I) ∼

√
I − I0

F (I) = [mI + C]+



Step 2: Effective synapse activation

ṡi = −βsi + αtrF

Synapse activation 
driven by a constant 
spike train with 
frequency F:



Step 3: Putting it all together

Insert the F-I curve into the s equation:

ṡ = −βs+ αmtr[−Gs+ θ + I]+

ṡ = −βs+ γ[−Gs+ θ + I]+

F = m[−Gs+ θ + I]+



Examples
s F



So what?
§ The rate equations can be further 

reduced to mean field models
§ These can be analyzed analytically
§ E.g. investigate global stability / 

“dynamical systems notion” of 
criticality – see Buckley & Nowotny, 
PRL 106, 238109 (2011)



Example result
§ Maximal dynamic range close to a bifurcation 

(“minimally stable global fixed point”)



Software
§ There are many packages for neuronal 

network simulation:
§ Neuron, Genesis
§ Brian/ Brian 2
§ NEST
§ GeNN (GPU enhanced neuronal networks), 

Brian2GeNN, SpineML2GeNN



Origins of GeNN
§ In 2010 I tried to implement a network on CUDA from scratch
§ Achieved a 24x speed up over CPU
§ It took a month to implement an existing model (after learning how to 

use CUDA)
§ The program was optimised for a particular GPU
§ It was designed for one size of the simulation



How GeNN works



Latest version outperforms HPC



Simulation performance

~ 80,000 neurons
300M static synapses



Network setup time



Next time …
§ A bit about insect olfaction and a odour

object recognition
§ Some introduction to our work in the 

Brains on Board project regarding 
insect navigation and autonomous 
robots


