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Also known as

Comp Neuro 101
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Why do we need models?

= Common misunderstanding: Modelling is not a form of
hypothesis testing: “garbage in, garbage out”

" Forces us to make assumptions explicit.

= Enables many “virtual” experiments to be done, can
pinpoint the one that is most crucial.

= Can lead to unexpected predictions.

= Often much quicker/easier to try out ideas, e.g. blocking
a connection or channel type
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What makes a good model?

" However, it's easy to make a bad alifey or
physicsy model

= Good to have close contact with
neuroscientists

= Model should not only replicate existing
data but must also make new predictions
about the biological system
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Scales in the nervous system
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Levels (scales) of modelling

" Many different types of models: There is a
continuum from very realistic to very abstract.
All models must make simplifications to be

useful.

" For instance, a model of a single neuron:
" Binary threshold unit, continuous unit
= Rate model, Integrate-and-fire model, Spiking neuron
= A few compartments, many compartments
" |ndividual channels, detailed model of channel dynamics
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Which model to use?

= Depends on purpose of the model! Different types
are appropriate for different sorts of questions.

= Two mainstream approaches: Top-down vs bottom
up:

= Top-down: based on rational theoretical hypothesis to infer
the mechanism of brain functions, i.e., start with an idea about
abstract task / problem, figure out a good way to solve it and
see if that's what the nervous system does.

= Bottom-up: based on experimental data, i.e., look closely at
the nervous system, try and figure out what it’s doing, derive

the task/problem from there.

Prof. Thomas Nowotny (@drtnowotny) S RilED
CCNR and Sussex Neuroscience, School of Engineering and Informatics  of sussEx



Modelling neurons

Extracellular space
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lon channels
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The membrane potential

Exterior potential 0
by convention

Chemical driving force Excess of positive
=l > @ @ charge outside ->
+ Electrical resting membrane
— S >d”"i"9 foree  notential is negative.
Electrochemical @
driving force Difference in
concentration: ions
diffuse through
channels (when
open)

US

Prof. Thomas Nowotny (@drtnowotny) DNlER
CCNR and Sussex Neuroscience, School of Engineering and Informatics  of sussEx



Conductance based model

Q=C,V
Cp= CpA

Cm = 10 nF/mm?

gL, = A/rm
Fmy =~ 1 MQ mm?

If C, is constant: Area = A
dV dQ
dt  dt gLV = V1)
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Adding ion channels
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Persistent and transient currents
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Hodgkin-Huxley model

Non-inactivating delayed rectifier current

Ixd = gxan* (Vg — V)

d
d_? = an(l —n)— Bun

~0.01(10— V) v
An = eXp( 1016‘/) 1 /Bn = 0.125 exXp (%)
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Hodgkin-Huxley model

Sodium current

Ina = gNam3h(VNa — V)

dm ——

— = amp(l —m) — Bmm “activation”
dt

% = ap(l —h) — Brh “inactivation”
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Hodgkin-Huxley model

|s often rewritten in terms of
870
0y + Bn
1
oy + Bn
dn 1

Noo —

Tn =
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Hodgkin-Huxley model
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Action potential
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Hodgkin-Huxley model

* The original model is “numerically not very
nice”

" |satype Il neuron (Hopf bifurcation)
" Today, not used much

" One of the most-used models is the HH-like
model by Traub & Miles (1991), which has
type | behaviour (saddle-node bifurcation)
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Traub-Miles model

= |n practice, it works very well

= Surprisingly, it has numerical instabilities:
—50—-V

exp (22T) — 1

Unclear at V=-50.

= ["Hopital shows that it’s well-defined and

continuous
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Modelling networks

= Action potential travel down axons
(mostly not modeled explicitly)

= Axons make contacts with target
neuron’s dendrites at Synapses

" Synapses can —depending on
transmitter — be excitatory (depolarize
target neuron) or inhibitory (hyper-
polarize)
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Synapses

Synaptic transmission is
B - uh u by chemical transmitters
axon termina
” microtubules for most synapses

of presynaptic
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Modeling synapses

Fraction s of released transmitter:

ds

% — —55 -+ 04(1 — 3)1[t,t—|—t7~]

Synaptic current into post-synaptic neuron:

]Syn — gsyns(‘/;ev — Vpost)
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How to use HH models

» Used for numerical simulations:

" Each neuron:
avi _
=
= Each pre-synapse:
de
dt
" Each post-synapse:

zsyn § gmsj rev_ z)
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How to simulate ...

" Euler Algorithm

Vi(t + At) = V(¢) A dde; At + O(At?)

" Good if equations not too stiff, small
time steps

= Otherwise: Runge-Kutta algorithms,
implicit algorithms, ...
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Simplified models

" One can work with V as the main
variable (and many people/studies do)

= But for larger scale/ different analysis
one can use simplified models
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A zoo of models ...

= Morris-Lecar
" Fitzhugh-Nagumo

" (leaky) integrate-and-fire
(IF/ LIF), exponential, adExp,
GIF

= McCulloch-Pitts <

> Reduced HH

discrete time/

probabilistic
" Hindmarsh-Rose y e
o abstract spiking
= |zhikevich, Rulkov
" Wilson-Cowan < rate models
" Kuramoto < phase oscillators
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Integrate-and-Fire

" Simple membrane equation — passive
only V=—gr(Ve —V)

" Explicit spiking mechanism:
if V> Vin :spike fired,
reset: V — Vieset
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Integrate-and-Fire

= Faster to simulate

" Allows some analytical work:

= Fvent - based simulation

= General analysis with theory of stochastic
processes

" Suitable for neuromorphic devices
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Different views of the same activity

" For synaptic transmission only spikes matter

o _ Trace of a B1 neuron in
0| | ,\ | the pond snail
-60 —*MM/‘/ l/‘/ '/ ll/‘_'// ilfiﬁ*’_) \x(—'—e\’f
1:2 .25 .3 1:35 1.4 ><1(1)(.145 Detect Splkes
*

Convolve with a kernel

2 7~ J T T . .
Equivalent “spike
o/ i T 7% “ density function” —a
// \\7 / \\\\ 4 \ .
o~ . l S N measure of spike rate
1.2 1.25 1.3 1.85 1.4 1.45

- lB

Prof. Thomas Nowotny (@drtnowotny) IiEp sy
CCNR and Sussex Neuroscience, School of Engineering and Informatics  of sussEx



Quantitative rate reduction

= We start from a full, conductance-based
model:

CVi = —Ina —Ix — It — Ing — Lijext — Lissyn
= Synapses are modelled by

‘S.’I: — _/Bsi + Z 1[tk,tk+t’r‘]

z ,Syn — Zgzgsj V V;'ev)

y Buckley & Nowotny, PRL

106, 238109 (2011)
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Step 1: -] curve

It iIs common to

characterize neurons by  250¢
their so-called F-I curve: —200!

* Fortype 1 (saddle- =
, , D150}

node bifurcation) ©
neurons: £100¢
F(I)~VI-Iy & |
 Fortype 1 with 5

adaptation: linear
F(I) = [mI +Cl,

100
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Step 2: Effective synapse activation

2 Synapse activation
10| TR A A driven by a constant
s ‘ . ° .
Ssp M 1 spike train with
36l W 7 | frequency F:
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Step 3: Putting it all together

Insert the F-I curve into the s equation:

s =—0s+amt.|—Gs+ 0 + 1|

s=—0s+y|—Gs+60+1],
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Examples
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So what?

" The rate equations can be further
reduced to mean field models

" These can be analyzed analytically

" E.g. investigate global stability /
“dynamical systems notion” of
criticality — see Buckley & Nowotny,
PRL 106, 238109 (2011)
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Example result

= Maximal dynamic range close to a bifurcation
(“minimally stable global fixed point”)
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Software

" There are many packages for neuronal

network simulation:
" Neuron, Genesis

= Brian/ Brian 2

= NEST

= GeNN (GPU enhanced neuronal networks),
Brian2GeNN, SpineML2GeNN
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Origins of GeNN

In 2010 | tried to implement a network on CUDA from scratch

Achieved a 24x speed up over CPU

It took a month to implement an existing model (after learning how to
use CUDA)

The program was optimised for a particular GPU
It was designed for one size of the simulation
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How GeNN works

a N
ExampleModel.cc
1: include B q
= e )
l e ExampleSimulation.cc
A~ w
§ generateALL.cc | 5')
[ generateRunner.cc N 0 —
< @ g ( R '_g q
generateKernels.cc 0 runner.cc Ko
iy d —
enerateCPU.cc N B [ neuronKrnl.cc & g
g d g O — \ J
B ( Krnl.cc 53% ‘
= synapseKrnl.
2: Jcompile (Q I =
runnerGPU.cc 5: compile
3: execute
[ generateALL ] s [ neuronFnct.cc
J
E) = v
Optimise for (i)detected GPU ( synapseFnct.cc E-)
(ii)model architecture [rwmmCPUcc = [iBGmMe&mmmmn :
() GeNN library source code Stand-alone executable
with both GPU and
(D executable code CPU simulation code
() generated simulator source code "lean & mean"

) model definition and user source code
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Latest version outperforms HPC

@frontiers ORIGINAL RESEARCH
in Neuroscience sorilicedes %

GPUs Outperform Current HPC and
Neuromorphic Solutions in Terms of
Speed and Energy When Simulating a
Highly-Connected Cortical Model

James C. Knight* and Thomas Nowotny

Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton,
United Kingdom

While neuromorphic systems may be the ultimate platform for deploying spiking
neural networks (SNNs), their distributed nature and optimization for specific types
of models makes them unwieldy tools for developing them. Instead, SNN models
tend to be developed and simulated on computers or clusters of computers with
standard von Neumann CPU architectures. Over the last decade, as well as becoming a
common fixture in many workstations, NVIDIA GPU accelerators have entered the High
OPEN ACCESS  Performance Computing field and are now used in 50 % of the Top 10 super computing
sites worldwide. In this paper we use our GeNN code generator to re-implement two

Edited by: SR g :
neo-cortex-inspired, circuit-scale, point neuron network models on GPU hardware. We

Gert Cauwenberghs,

University of California, San Diego,  verify the correctness of our GPU simulations against prior results obtained with NEST
United States

running on traditional HPC hardware and compare the performance with respect to
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Simulation performance
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Network setup time
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Next time ...

= A bit about insect olfaction and a odour
object recognition

= Some introduction to our work in the
Brains on Board project regarding
insect navigation and autonomous
robots
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